Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Maria Del Rosario Benites,
 Steven F. Watkins and Frank R. Fronczek*

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

Correspondence e-mail: ffroncz@lsu.edu

Key indicators

Single-crystal X-ray study
$T=110 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$
R factor $=0.054$
$w R$ factor $=0.157$
Data-to-parameter ratio $=33.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
4-[2-(9-Anthryl)-2-hydroxyethyl]-4'-methyl-trans-2,2'-bipyridine: a ligand with 2,2'-bipyridine and anthracene subunits

In the title compound, $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$, the $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{N}$ torsion angle of the bipyridine unit has a magnitude of $171.21(8)^{\circ}$, and the bipyridine and anthracene planes are approximately parallel, forming a dihedral angle of $6.24(8)^{\circ}$. Molecules form centrosymmetric dimers via $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds of length 2.8221 (11) \AA.

Comment

In studies of the photochemistry and photophysics of poly-pyridine-Ru complexes and their potential application in the photochemical decomposition of water, Cherry studied the effects of substituents on $2,2^{\prime}$-bipyridine ligands (Cherry \& Henderson, 1984; Ollino \& Cherry, 1985; Henderson et al., 1984; Wacholtz et al., 1985). The title compound, (I), was a product of that study, and the crystal structure determination has been carried out to confirm its identity.

(I)

The bipyridine is in the anti conformation, with an $\mathrm{N} 1-$ $\mathrm{C} 20-\mathrm{C} 22-\mathrm{N} 2$ torsion angle of $-171.21(8)^{\circ}$, similar to that seen in $4,4^{\prime}$-dimethyl-2, 2^{\prime}-bipyridine, which lies on an inversion center (Beswick \& Davies, 1996; Zhang et al., 2003). The anthracene system is essentially planar, exhibiting a mean deviation of $0.014 \AA$ for its 14 C atoms, and a maximum deviation of 0.034 (1) \AA for C12. The anthracene plane makes a dihedral angle of $6.24(8)^{\circ}$ with the mean plane of the 12 bipyridine non-H atoms.

Molecules form hydrogen-bonded dimers about inversion centers, with the distal N atom serving as acceptor, having graph-set descriptor (Etter, 1990) $R_{2}^{2}(18)$, as shown in Fig. 2.

Experimental

The compound was a gift from Professor William R. Cherry. Crystals were grown by evaporation of a methanol solution.

Received 21 June 2006
Accepted 26 June 2006

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=390.47$
Triclinic, $P \overline{1}$
$a=7.4985$ (10) \AA
$b=10.505$ (2) A
$c=12.782(2) \AA$
$\alpha=82.102(9)^{\circ}$
$\beta=73.795(10)^{\circ}$
$\gamma=87.186(11)^{\circ}$

Data collection

Nonius KappaCCD diffractometer with Oxford Cryostream ω scans with κ offsets
Absorption correction: none
31964 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.157$
$S=1.04$
9108 reflections
276 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
V=957.6(3) \AA^{3}
$$

$Z=2$

$D_{x}=1.354 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=110 \mathrm{~K}$
Parallelepiped, yellow $0.35 \times 0.27 \times 0.25 \mathrm{~mm}$

9108 independent reflections 6314 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.039$ $\theta_{\text {max }}=36.3^{\circ}$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0837 P)^{2}\right. \\
\quad+0.0951 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.46 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 10 H \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.887(17)$	$1.957(17)$	$2.8221(11)$	$164.7(16)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.
For $s p^{2} \mathrm{C}$ atoms, a $\mathrm{C}-\mathrm{H}$ distance of $0.95 \AA$ was used, and displacement parameters for H atoms were assigned as $U_{\mathrm{iso}}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ of the attached C atom. For the methyl group, $\mathrm{C}-\mathrm{H}$ was set at $0.98 \AA, U_{\text {iso }}(\mathrm{H})$ at $1.5 U_{\mathrm{eq}}(\mathrm{C})$, and a torsional parameter was refined. The OH hydrogen was refined, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski \& Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The purchase of the diffractometer was made possible by Grant No. LEQSF(1999-2000)-ESH-TR-13, administered by the Louisiana Board of Regents. We thank Professor William R. Cherry for providing the sample.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Beswick, M. A. \& Davies, J. E. (1996). Private communication to the Cambridge Structural Database (refcode NAMKAN), 12 Union Road, Cambridge, England.

Figure 1
The title compound, showing the atom-numbering scheme, with displacement ellipsoids drawn at the 50% probability level.

Figure 2
The hydrogen-bonded (dashed lines) dimer in (I). Only the OH H atoms are shown. The primed molecule is related by $(1-x, 1-y, 1-z)$.

Cherry, W. R. \& Henderson, L. J. (1984). Inorg. Chem. 23, 983-986.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Henderson, L. J., Fronczek, F. R. \& Cherry, W. R. (1984). J. Am. Chem. Soc. 106, 5876-5879.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Ollino, M. \& Cherry, W. R. (1985). Inorg. Chem. 24, 1417-1418.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter \& R. M. Sweet, pp. 307-326. London: Academic Press.
Sheldrick, G. (1997). SHELXL97. University of Göttingen, Germany.
Wacholtz, W. M., Auerbach, R. A., Schmehl, R. H., Ollino, M. \& Cherry, W. R. (1985). Inorg. Chem. 24, 1758-1760.

Zhang, Y., Maverick, A. W. \& Fronczek, F. R. (2003). Private communication to the Cambridge Structural Database (refcode NAMKAN02), 12 Union Road, Cambridge, England.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

